Indoor Air Quality (IAQ) significantly influences health and productivity in industrial and manufacturing facilities. Poor air quality can lead to respiratory issues, allergies and decreased cognitive function. Prolonged exposure to airborne pollutants such as fine particulate matter (PM2.5), volatile organic compounds (VOCs) and chemical fumes can exacerbate chronic conditions like asthma and cardiovascular diseases. Moreover, inadequate IAQ can increase employee absenteeism and reduce workplace efficiency.
In addition to creating a healthier work environment, implementing effective IAQ strategies is essential for protecting valuable assets. Prioritizing IAQ as part of a corrosion management strategy can significantly prolong the lifespan of infrastructure and equipment and lower maintenance costs. Investing in IAQ management is a proactive approach that enhances the well-being of personnel, protects valuable equipment, and maximizes operational efficiency.
Understanding IAQ Monitoring
IAQ quality monitoring involves assessing the levels of pollutants in the air to ensure they remain within safe limits and comply with environmental regulations. Common contaminants monitored include particulate matter, VOCs and other harmful gases.
Particulate matter (PM) refers to a mixture of tiny solid particles and liquid droplets suspended in the air. The classification of particulate matter is based on the diameter of these particles, which significantly impacts their behavior in the atmosphere and their effects on health and the environment.
PM1 refers to particles with a diameter of 1 micrometer (µm) or smaller. Sources of PM1 include combustion particles (e.g., from engines and industrial processes), secondary particles formed from chemical reactions (e.g., sulfates and nitrates) and some ultrafine particles. PM1 can penetrate deeply into the lungs and may even enter the bloodstream, posing risks such as cardiovascular and respiratory issues.
PM2.5 refers to particles with a diameter of 2.5 micrometers or smaller. PM2.5 can be generated by combustion (e.g., vehicle engines, industrial processes and wildfires), certain chemical reactions and natural sources like pollen or sea spray. PM2.5 particles are small enough to bypass the nose and throat and settle in the lungs, potentially causing respiratory diseases, heart conditions and other systemic health issues.
The smaller the particle, the deeper it can penetrate into the body. Moreover, smaller particles like PM1 stay suspended in the air longer and can travel greater distances, affecting air quality over large areas.
VOCs are a group of organic chemicals that easily evaporate into the air at room temperature. These compounds have relatively low boiling points, which allow them to transition from a liquid or solid state to a gas. They are emitted by a wide range of sources, both natural and man-made, and can significantly affect IAQ. In industrial and manufacturing settings VOCs are produced by solvents used in paints, coatings and adhesives, as well as emissions from machinery and processes involving chemicals. Cleaning agents, disinfectants and building materials are also culprits.
Air quality monitoring systems allow you to monitor, track reports and improve the air quality in facilities. These systems enable you to ensure that the air quality in a facility meets recommended guidelines. Air quality monitoring devices help companies in any market and of any size monitor and even control their air quality to keep employees healthy, improve productivity, prevent equipment damage and downtime, and maintain manufacturing.
Camfil’s AirImage sensors measure temperature, relative humidity (RH), absolute pressure and particulate matter (PM1, PM2.5), enabling you to monitor, track and improve air quality in your facility. These user-friendly sensors are ready to use straight out of the box, offering an intuitive interface for accessing real-time and historical air quality data. With versatile connectivity, the AirImage sensors can transmit data and notifications remotely to devices connected to a building management system (BMS), the internet or a ground-penetrating radar system (GPRS). Users can easily adjust settings, view information and connect with Camfil air purifiers via the web-based user interface (UI).
The Role of Molecular Air Filters
Molecular air filters are specialized devices that remove harmful gases and odors from the air, addressing contaminants that particulate filters cannot capture. These filters are essential in environments where gaseous pollutants pose significant health risks or can damage sensitive equipment.
In industries such as pharmaceuticals, pulp and paper mills, wastewater treatment plants, airports, museums and commercial offices molecular filters play a critical role in maintaining air purity. For instance, in healthcare, filtering out the harmful contaminant gases produced by helipads and ambulances is essential to protecting the people inside the hospital. Similarly, in manufacturing such as foam mattress or EV battery production, these filters help remove the effects of harmful gases released during production processes, ensuring a safer working environment.
Camfil’s molecular air filters remove molecules, gases and vapors from the air. They are tested according to ISO 10121 or ASHRAE 145.2.
ISO 10121 is a series of standards that provides test methods to define the filtration efficiency of molecular air filters and filter media against various gases. ISO 10121-3, published in October 2022, is the first classification system for molecular air filters for general ventilation. It contains comprehensive filter classes for the most common air pollutants in outdoor air. This greatly facilitates the selection of the molecular filter, depending on the local outdoor air quality.
ASHRAE 145.2 is a standard that outlines a lab test to measure how well in-duct gas-phase air-cleaning devices work. These devices use adsorption and/or chemical reactions through the use of molecular media such as activated carbon to remove harmful gases by adsorbing them or causing chemical reactions in order to bind the molecules to the media. The test is done in controlled conditions with higher gas levels than usual for ventilation systems. It’s meant to compare the performance of different devices, not to predict how they’ll perform in specific real-world settings.
Molecules are about 1,000 to 10,000 times smaller than the most minute particles that HEPA and ULPA filters can capture. Camfil molecular filters work using a process called adsorption, which means trapping gas molecules to the surfaces of molecular media to help remove gases from the air. When the entire molecular media surface is occupied, no more gas molecules can be removed. Most of these filters use activated carbon, impregnated activated carbon or activated alumina as the key ingredient. Molecular filters are also called chemical filters or gas-phase filters.
Importance of IAQ Management and Corrosion Monitoring
Effective IAQ management can significantly reduce corrosion rates by controlling and minimizing the presence of corrosive gaseous contaminants that accelerate material degradation. Corrosive gases, such as sulfur dioxide (SO₂), nitrogen oxides (NOₓ), hydrogen sulfide (H₂S), and chlorine, often exist in industrial and manufacturing environments. These acidic gases saturate the environment and as a result, attack expensive electronic control equipment as well as other essential operational equipment. This results in expensive maintenance costs and downtime. When these contaminants interact with moisture in the air, they form acids or other reactive compounds that attack metal surfaces, coatings and infrastructure.
Corrosion is typically not recognized until it’s too late, resulting in damage that could have been prevented. By employing IAQ management strategies, such as advanced filtration systems, climate control and real-time monitoring, facility operators can limit the concentration of these corrosive agents. For instance, high-efficiency filters can capture fine particulate matter and gaseous pollutants, while humidity control systems prevent the formation of condensation that facilitates electrochemical reactions. Furthermore, proactive monitoring allows for early detection and response to unfavorable environmental conditions, reducing the likelihood of prolonged exposure to corrosive substances. This approach not only mitigates corrosion but also supports operational efficiency and long-term sustainability.
Camfil offers solutions that integrate IAQ monitoring with corrosion prevention strategies, providing comprehensive protection for both human health and infrastructure. For example, Camfil’s AirImage-COR air quality monitor instantly measures corrosive gases in the air to indicate when users should change air filters to protect sensitive electronic equipment and preserve valuable assets. By utilizing the AirImage-COR device, industries can proactively monitor and manage corrosive elements in the air, leading to informed maintenance strategies and extended equipment lifespan.
The AirImage-COR air quality monitor features a 5-inch color touchscreen display and provides real-time International Society of Automation (ISA) standard 71.04 corrosion classification, enabling users to identify threats in real-time. It comes with a full suite of options to connect with your building management system. You can create customized email and text notifications and remotely manage the device with the progressive web application (PWA).
Summing It Up
Integrating advanced air quality monitoring systems with corrosion management practices promotes a healthy workplace, enhances productivity and prolongs equipment life. Camfil’s solutions provide comprehensive approaches to IAQ and corrosion monitoring, ensuring safer and more efficient environments.
To discover more ways Camfil USA can help you to protect people, processes and the environment, visit us at www.camfil.us/.
¹ EPA, Introduction to Indoor Air Quality, https://www.epa.gov/indoor-air-quality-iaq/introduction-indoor-air-quality
² Camfil, PM1 – The new focus to protect human health, https://www.camfil.com/en-us/insights/standard-and-regulations/pm1-is-most-harmful
³ Camfil, Volatile Organic Compounds Explained: FAQs Answered by Camfil Indoor Air Quality Specialists, https://cleanair.camfil.us/2024/07/17/volatile-organic-compounds-explained-faqs-answered-by-camfil-indoor-air-quality-specialists/
⁴ Camfil, ISO 10121-3:2022, https://www.camfil.com/en-us/insights/standard-and-regulations/iso-10121-3—2022
⁵ANSI/ASHRAE, Standard 145.2-2016, https://webstore.ansi.org/standards/ashrae/ansiashraestandard1452016?srsltid=AfmBOoq8I_An4gW_-h6vEaVU67Zzv15z7kpmf9HhKYA5b51sP8MglCC4
⁶ Camfil, The Importance of Molecular Air Filtration Using Carbon Filters in the U.S.: A Comprehensive Guide, https://cleanair.camfil.us/2024/04/11/the-importance-of-molecular-air-filtration-using-carbon-filters-in-the-u-s-a-comprehensive-guide/
⁷ Camfil, Gaining control over corrosion with molecular air filtration solutions, https://www.camfil.com/en/insights/electronics-and-optics/gaining-control-over-corrosion
The post Enhancing Indoor Air Quality and Corrosion Monitoring with Camfil’s Advanced Solutions appeared first on Air Filters for Clean Air.
from Air Filters for Clean Air
No comments:
Post a Comment